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In [1] it is shown that elements of the unitary matrix determined by a quantum
circuit can be computed by counting the number of common roots in the finite field
Z2 for a certain set of multivariate polynomials over Z2. Given a quantum circuit, the
polynomial set is uniquely constructed. In this paper we present a C# package called
QuPol (Quantum Polynomials) that allows a user to assemble a quantum circuit and to
generate the multivariate polynomial set associated with the circuit.

The generated polynomial system can further be converted into the canonical Gröbner
basis form for the lexicographical monomial order. Gröbner bases form the most uni-
versal algorithmic tool of modern computer algebra to investigate and solve systems of
polynomial equations [2]. Construction of the lexicographical Gröbner basis substantially
alleviates the problem of the root finding for polynomial systems. To construct such a
Gröbner basis, one can use efficient involutive algorithms developed in [3]. Our QuPol
package together with a Gröbner basis software provides a tool for simulation of quantum
circuits. We illustrate this tool by an example.

Our program has a user-friendly graphical interface and a built-in base of the elemen-
tary gates representing certain quantum gates and wires. A user can easily assemble an
input circuit from those elements.

We apply the famous Feynman’s sum-over-paths approach to calculate the matrix
element of a quantum circuit. For this purpose we replace every quantum gate of the
circuit under consideration by its classical counterpart. The trick here is to select the
corresponding classical gate for the quantum Hadamard gate because for any input value,
0 or 1, it gives with equal probability either 0 or 1. We denote the output of the classical
Hadamard gate by the path variable x. Its value determines one of two possible paths of
computation. The classical Toffoli gate acts as (a1, a2, a3) 7→ (a1, a2, a3 ⊕ a1a2) , and the
classical Hadamard gate as a1 7→ x, ai, x ∈ Z2.

Fig. 1 shows an example of quantum circuit (taken from [1]) and its classical corre-
spondence. The path variables xi comprise the (vector) path x = (x1, x2, x3, x4)

T ∈ Z
4
2.

Fig. 1: From quantum to classical circuit

A classical path is a sequence of classical bit strings a, a1, a2, . . . , am = b resulting from
application of the classical gates. For each selection of values for the path variables xi
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we have a sequence of classical bit strings which is called an admissible classical path.
Each admissible classical path has a phase which is determined by the Hadamard gates
applied. The phase is changed only when the input and output of the Hadamard gate are
simultaneously equal to 1, and this gives the formula

ϕ(x) =
∑

Hadamard gates

input • output.

Toffoli gates do not change the phase.
For our example the phase of the path x is

ϕ(x) = a1x1 ⊕ a2x2 ⊕ x1x3 ⊕ x4(a3 ⊕ x1x2).

The matrix element of a quantum circuit is given by sum over all the allowed paths
from the classical states a to b

〈b|Uf |a〉 =
1√
2h

∑

x:b(x)=b

(−1)ϕ(x)
,

where h is the number of Hadamard gates.
Let N0 be the number of positive terms in the sum and N1 the number of negative

terms
N0 = |{x|b(x) = b & ϕ(x) = 0}| ,
N1 = |{x|b(x) = b & ϕ(x) = 1}| .

These equations count solutions to a system of n + 1 polynomials in h variables over Z2.
Then the matrix element may be written as the difference

〈b|Uf |a〉 =
1√
2h

(N0 − N1) . (1)

For assembling arbitrary quantum circuits composed from Hadamard and Toffoli gates,
we suggest to use the set of elementary gates shown on Fig. 2 and to represent a circuit
as a rectangular table (Fig. 3, left) each cell of which contains an elementary gate, so that
the output for each row is determined by the composition of the row elementary gates. To
assemble a circuit, we define an empty table of the required size. In this case the output
and phase are not fixed. Then we place required elementary gates in appropriate cells
and construct the circuit polynomials (Fig. 3, right) .

A system generated by the program is a finite set F ⊂ R of polynomials in the ring

R := Z2[ai, bj][x1, ..., xh], ai, bj ∈ Z2, i, j = 1, ...n,

in h variables and 2n binary coefficients. One has to count the number of roots N0 and
N1 in Z2 of the polynomial sets F0 = {f, ..., fk, ϕ } , F1 = {f, ..., fk, ϕ + 1 }. Then the
circuit matrix is given by (1). To count the number of roots, one can convert F0 and F1

into a triangular form by computing the lexicographical Gröbner basis by means of the
Buchberger algorithm or by involutive algorithm decribed in [3]. For the example shown
on Fig. 1 we have the following polynomial system:

f1 = x2x4 + x3 + b1,

f2 = x2 + b2,

f3 = x4 + b3,

ϕ = x1x2 + x1x3 + a1x1 + a2x2 + a3x4.
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Fig. 2: Elementary gates

Fig. 3: Elementary decomposition (left) and assembling of a circuit (right)

The lexicographical Gröbner basis for the ordering x1 Â x2 Â x3 Â x4 on the variables
and representing both F0 and F1 is as follows

g1 = (a1 + b1)x1 + a2b2 + a3b3 (+1),
g2 = x2 + b2,

g3 = x3 + b1 + b2b3,

g3 = x4 + b3.

From this lexicographical Gröbner basis we immediately obtain the following conditions
on the parameters:

a1 + b1 = 0 & a2b2 + a3b3 = 0,
a1 + b1 = 0 & a2b2 + a3b3 = 1.

From these conditions we easily count 2 (0) roots of F0 (F1) and 0 (2) roots of F0 (F1).
In all other cases there is 1 root of F0 and F1.

Some matrix elements are

〈000|U |000〉 =
1

2
, 〈000|U |001〉 = −1

2
, 〈000|U |111〉 = 0.
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